Factorise : $3 x^{2}-x-4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

 $3 x^{2}-x-4$

We have  $a =3$, $b =-1$ and $c =-4$ 

$\therefore  l+ m =-1 $ and $lm =3 \times(-4)=-12$

$\therefore $ $ l=-4$  and  $m =3 $

Now,          $3 x ^{2}- x -4=3 x ^{2}-4 x +3 x -4$

$=x(3 x-4)+1(3 x-4)=(3 x-4)(x+1)$

Thus, $3 x^{2}-x-4=(3 x-4)(x+1)$

Similar Questions

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x) = (x + 1) (x -2)$, $x = -\,1, \,2$

Divide $p(x)$ by $g(x)$, where $p(x) = x + 3x^2 -1$ and $g(x) = 1 + x$.

Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.

Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-3 x+k$

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}+x^{2}+x+1$.